Source code for gensbi.recipes.flux1

"""
Pipeline for training and using a Flux1 model for simulation-based inference.
"""

import jax
import jax.numpy as jnp
from flax import nnx


from gensbi.models import (
    Flux1,
    Flux1Params,
)

import yaml

from gensbi.recipes.conditional_pipeline import (
    ConditionalFlowPipeline,
    ConditionalDiffusionPipeline,
)


[docs] def parse_flux1_params(config_path: str): """ Parse a Flux1 configuration file. Parameters ---------- config_path : str Path to the configuration file. Returns ------- config : dict Parsed configuration dictionary. """ with open(config_path, "r") as f: config = yaml.safe_load(f) model_params = config.get("model", {}) params_dict = dict( in_channels=model_params.get("in_channels", 1), vec_in_dim=model_params.get("vec_in_dim", None), context_in_dim=model_params.get("context_in_dim", 1), mlp_ratio=model_params.get("mlp_ratio", 4), num_heads=model_params.get("num_heads", 6), depth=model_params.get("depth", 8), depth_single_blocks=model_params.get("depth_single_blocks", 16), axes_dim=model_params.get("axes_dim", [6, 0]), qkv_bias=model_params.get("qkv_bias", True), theta=model_params.get("theta", -1), id_embedding_strategy=tuple( model_params.get("id_embedding_strategy", ("absolute", "absolute")) ), param_dtype=getattr(jnp, model_params.get("param_dtype", "float32")), ) return params_dict
[docs] def parse_training_config(config_path: str): """ Parse a training configuration file. Parameters ---------- config_path : str Path to the configuration file. Returns ------- config : dict Parsed configuration dictionary. """ with open(config_path, "r") as f: config = yaml.safe_load(f) # Training parameters train_params = config.get("training", {}) multistep = train_params.get("multistep", 1) experiment_id = train_params.get("experiment_id", 1) early_stopping = train_params.get("early_stopping", True) nsteps = train_params.get("nsteps", 30000) * multistep val_every = train_params.get("val_every", 100) * multistep # Optimizer parameters opt_params = config.get("optimizer", {}) MAX_LR = opt_params.get("max_lr", 1e-3) MIN_LR = opt_params.get("min_lr", 0.0) MIN_SCALE = MIN_LR / MAX_LR if MAX_LR > 0 else 0.0 warmup_steps = opt_params.get("warmup_steps", 500) ema_decay = opt_params.get("ema_decay", 0.999) decay_transition = opt_params.get("decay_transition", 0.85) training_config = {} # overwrite the defaults with the config file values training_config["nsteps"] = nsteps training_config["ema_decay"] = ema_decay training_config["decay_transition"] = decay_transition training_config["max_lr"] = MAX_LR training_config["min_lr"] = MIN_LR training_config["min_scale"] = MIN_SCALE training_config["val_every"] = val_every training_config["early_stopping"] = early_stopping training_config["experiment_id"] = experiment_id training_config["multistep"] = multistep training_config["warmup_steps"] = warmup_steps return training_config
[docs] class Flux1FlowPipeline(ConditionalFlowPipeline): def __init__( self, train_dataset, val_dataset, dim_obs: int, dim_cond: int, ch_obs=1, ch_cond=1, params=None, training_config=None, ): """ Flow pipeline for training and using a Flux1 model for simulation-based inference. Parameters ---------- train_dataset : grain dataset or iterator over batches Training dataset. val_dataset : grain dataset or iterator over batches Validation dataset. dim_obs : int Dimension of the parameter space. dim_cond : int Dimension of the observation space. ch_obs : int, optional Number of channels in the observation data. Default is 1. ch_cond : int, optional Number of channels in the conditional data. Default is 1. params : Flux1Params, optional Parameters for the Flux1 model. If None, default parameters are used. training_config : dict, optional Configuration for training. If None, default configuration is used. Examples -------- Minimal example on how to instantiate and use the Flux1FlowPipeline: .. literalinclude:: /examples/flux1_flow_pipeline.py :language: python :linenos: .. image:: /examples/flux1_flow_pipeline_marginals.png :width: 600 .. note:: If you plan on using multiprocessing prefetching, ensure that your script is wrapped in a ``if __name__ == "__main__":`` guard. See https://docs.python.org/3/library/multiprocessing.html """ if params is not None: ch_obs = params.in_channels if params is not None: ch_cond = params.context_in_dim
[docs] self.dim_obs = dim_obs
[docs] self.dim_cond = dim_cond
[docs] self.ch_obs = ch_obs
[docs] self.ch_cond = ch_cond
if params is None: params = self._get_default_params() model = self._make_model(params) super().__init__( model=model, train_dataset=train_dataset, val_dataset=val_dataset, dim_obs=dim_obs, dim_cond=dim_cond, ch_obs=ch_obs, ch_cond=ch_cond, params=params, training_config=training_config, id_embedding_strategy=params.id_embedding_strategy, )
[docs] self.ema_model = nnx.clone(self.model)
# TODO: check how to implement the in channels and cond channels properly, we may need to modify something here @classmethod
[docs] def init_pipeline_from_config( cls, train_dataset, val_dataset, dim_obs: int, dim_cond: int, config_path: str, checkpoint_dir: str, ): """ Initialize the pipeline from a configuration file. Parameters ---------- config_path : str Path to the configuration file. """ with open(config_path, "r") as f: config = yaml.safe_load(f) # methodology strategy = config.get("strategy", {}) method = strategy.get("method") model_type = strategy.get("model") assert method == "flow", f"Method {method} not supported in Flux1FlowPipeline." assert ( model_type == "flux" ), f"Model type {model_type} not supported in Flux1FlowPipeline." params_dict = parse_flux1_params(config_path) params = Flux1Params( rngs=nnx.Rngs(0), dim_obs=dim_obs, dim_cond=dim_cond, **params_dict, ) # Training parameters training_config = cls.get_default_training_config() training_config["checkpoint_dir"] = checkpoint_dir training_config_ = parse_training_config(config_path) for key, value in training_config_.items(): training_config[key] = value # update with config file values pipeline = cls( train_dataset, val_dataset, dim_obs, dim_cond, ch_obs=params.in_channels, ch_cond=params.context_in_dim, params=params, training_config=training_config, ) return pipeline
[docs] def _make_model(self, params): """ Create and return the Flux1 model to be trained. """ model = Flux1(params) return model
[docs] def _get_default_params(self): """ Return default parameters for the Flux1 model. """ params = Flux1Params( in_channels=self.ch_obs, vec_in_dim=None, context_in_dim=self.ch_cond, mlp_ratio=4, num_heads=6, depth=8, depth_single_blocks=16, axes_dim=[6, 1], qkv_bias=True, dim_obs=self.dim_obs, dim_cond=self.dim_cond, theta=10 * (self.dim_obs + self.dim_cond), id_embedding_strategy=("absolute", "absolute"), rngs=nnx.Rngs(default=42), param_dtype=jnp.float32, ) return params
[docs] class Flux1DiffusionPipeline(ConditionalDiffusionPipeline): def __init__( self, train_dataset, val_dataset, dim_obs: int, dim_cond: int, ch_obs=1, ch_cond=1, params=None, training_config=None, ): """ Diffusion pipeline for training and using a Flux1 model for simulation-based inference. Parameters ---------- train_dataset : grain dataset or iterator over batches Training dataset. val_dataset : grain dataset or iterator over batches Validation dataset. dim_obs : int Dimension of the parameter space. dim_cond : int Dimension of the observation space. ch_obs : int, optional Number of channels in the observation data. Default is 1. ch_cond : int, optional Number of channels in the conditional data. Default is 1. params : Flux1Params, optional Parameters for the Flux1 model. If None, default parameters are used. training_config : dict, optional Configuration for training. If None, default configuration is used. Examples -------- Minimal example on how to instantiate and use the Flux1DiffusionPipeline: .. literalinclude:: /examples/flux1_diffusion_pipeline.py :language: python :linenos: .. image:: /examples/flux1_diffusion_pipeline_marginals.png :width: 600 .. note:: If you plan on using multiprocessing prefetching, ensure that your script is wrapped in a ``if __name__ == "__main__":`` guard. See https://docs.python.org/3/library/multiprocessing.html """ if params is not None: ch_obs = params.in_channels if params is not None: ch_cond = params.context_in_dim
[docs] self.dim_obs = dim_obs
[docs] self.dim_cond = dim_cond
[docs] self.ch_obs = ch_obs
[docs] self.ch_cond = ch_cond
if params is None: params = self._get_default_params() model = self._make_model(params) super().__init__( model=model, train_dataset=train_dataset, val_dataset=val_dataset, dim_obs=dim_obs, dim_cond=dim_cond, ch_obs=ch_obs, ch_cond=ch_cond, params=params, training_config=training_config, id_embedding_strategy=params.id_embedding_strategy, )
[docs] self.ema_model = nnx.clone(self.model)
# TODO: need to update this too @classmethod
[docs] def init_pipeline_from_config( cls, train_dataset, val_dataset, dim_obs: int, dim_cond: int, config_path: str, checkpoint_dir: str, ): """ Initialize the pipeline from a configuration file. Parameters ---------- config_path : str Path to the configuration file. """ with open(config_path, "r") as f: config = yaml.safe_load(f) # methodology strategy = config.get("strategy", {}) method = strategy.get("method") model_type = strategy.get("model") assert ( method == "diffusion" ), f"Method {method} not supported in Flux1DiffusionPipeline." assert ( model_type == "flux" ), f"Model type {model_type} not supported in Flux1DiffusionPipeline." # Model parameters from config dim_joint = dim_obs + dim_cond params_dict = parse_flux1_params(config_path) if params_dict["theta"] == -1: params_dict["theta"] = 4 * dim_joint params = Flux1Params( rngs=nnx.Rngs(0), dim_obs=dim_obs, dim_cond=dim_cond, **params_dict, ) # Training parameters training_config = cls.get_default_training_config() training_config["checkpoint_dir"] = checkpoint_dir training_config_ = parse_training_config(config_path) for key, value in training_config_.items(): training_config[key] = value # update with config file values pipeline = cls( train_dataset, val_dataset, dim_obs, dim_cond, ch_obs=params.in_channels, ch_cond=params.context_in_dim, params=params, training_config=training_config, ) return pipeline
[docs] def _make_model(self, params): """ Create and return the Flux1 model to be trained. """ model = Flux1(params) return model
[docs] def _get_default_params(self): """ Return default parameters for the Flux1 model. """ params = Flux1Params( in_channels=self.ch_obs, vec_in_dim=None, context_in_dim=self.ch_cond, mlp_ratio=4, num_heads=6, depth=8, depth_single_blocks=16, axes_dim=[6, 1], qkv_bias=True, dim_obs=self.dim_obs, dim_cond=self.dim_cond, theta=10 * (self.dim_obs + self.dim_cond), id_embedding_strategy=("absolute", "absolute"), rngs=nnx.Rngs(default=42), param_dtype=jnp.float32, ) return params