Source code for gensbi.recipes.simformer

"""
Pipeline for training and using a Simformer model for simulation-based inference.
"""

import jax
import jax.numpy as jnp
from flax import config, nnx

import yaml


from gensbi.models import (
    Simformer,
    SimformerParams,
)


from gensbi.recipes.joint_pipeline import JointFlowPipeline, JointDiffusionPipeline


[docs] def parse_simformer_params(config_path: str): """ Parse a Simformer configuration file. Parameters ---------- config_path : str Path to the configuration file. Returns ------- config : dict Parsed configuration dictionary. """ with open(config_path, "r") as f: config = yaml.safe_load(f) model_params = config.get("model", {}) params_dict = dict( in_channels=model_params.get("in_channels", 1), dim_value=model_params.get("dim_value", 40), dim_id=model_params.get("dim_id", 40), dim_condition=model_params.get("dim_condition", 10), fourier_features=model_params.get("fourier_features", 128), num_heads=model_params.get("num_heads", 4), num_layers=model_params.get("num_layers", 8), widening_factor=model_params.get("widening_factor", 3), qkv_features=model_params.get("qkv_features", 90), num_hidden_layers=model_params.get("num_hidden_layers", 1), ) return params_dict
[docs] def parse_training_config(config_path: str): """ Parse a training configuration file. Parameters ---------- config_path : str Path to the configuration file. Returns ------- config : dict Parsed configuration dictionary. """ with open(config_path, "r") as f: config = yaml.safe_load(f) # Training parameters train_params = config.get("training", {}) multistep = train_params.get("multistep", 1) experiment_id = train_params.get("experiment_id", 1) early_stopping = train_params.get("early_stopping", True) nsteps = train_params.get("nsteps", 30000) * multistep val_every = train_params.get("val_every", 100) * multistep # Optimizer parameters opt_params = config.get("optimizer", {}) MAX_LR = opt_params.get("max_lr", 1e-3) MIN_LR = opt_params.get("min_lr", 0.0) MIN_SCALE = MIN_LR / MAX_LR if MAX_LR > 0 else 0.0 ema_decay = opt_params.get("ema_decay", 0.999) decay_transition = opt_params.get("decay_transition", 0.85) warmup_steps = opt_params.get("warmup_steps", 500) training_config = {} # overwrite the defaults with the config file values training_config["nsteps"] = nsteps training_config["ema_decay"] = ema_decay training_config["decay_transition"] = decay_transition training_config["max_lr"] = MAX_LR training_config["min_lr"] = MIN_LR training_config["min_scale"] = MIN_SCALE training_config["val_every"] = val_every training_config["early_stopping"] = early_stopping training_config["experiment_id"] = experiment_id training_config["multistep"] = multistep training_config["warmup_steps"] = warmup_steps return training_config
[docs] class SimformerFlowPipeline(JointFlowPipeline): def __init__( self, train_dataset, val_dataset, dim_obs: int, dim_cond: int, ch_obs: int = 1, params=None, training_config=None, edge_mask=None, condition_mask_kind="structured", ): """ Flow pipeline for training and using a Simformer model for simulation-based inference. Parameters ---------- train_dataset : grain dataset or iterator over batches Training dataset. val_dataset : grain dataset or iterator over batches Validation dataset. dim_obs : int Dimension of the parameter space. dim_cond : int Dimension of the observation space. ch_obs : int Number of channels in the observation data. params : SimformerParams, optional Parameters for the Simformer model. If None, default parameters are used. training_config : dict, optional Configuration for training. If None, default configuration is used. edge_mask : jnp.ndarray, optional Edge mask for the Simformer model. If None, no mask is applied. condition_mask_kind : str, optional Kind of condition mask to use. One of ["structured", "posterior"]. Examples -------- Minimal example on how to instantiate and use the SimformerFlowPipeline: .. literalinclude:: /examples/simformer_flow_pipeline.py :language: python :linenos: .. image:: /examples/simformer_flow_pipeline_marginals.png :width: 600 .. note:: If you plan on using multiprocessing prefetching, ensure that your script is wrapped in a ``if __name__ == "__main__":`` guard. See https://docs.python.org/3/library/multiprocessing.html """
[docs] self.dim_joint = dim_obs + dim_cond
[docs] self.ch_obs = ch_obs
if params is None: params = self._get_default_params() model = self._make_model(params) super().__init__( model=model, train_dataset=train_dataset, val_dataset=val_dataset, dim_obs=dim_obs, dim_cond=dim_cond, ch_obs=ch_obs, params=params, training_config=training_config, condition_mask_kind=condition_mask_kind, )
[docs] self.ema_model = nnx.clone(self.model)
[docs] self.edge_mask = edge_mask
@classmethod
[docs] def init_pipeline_from_config( cls, train_dataset, val_dataset, dim_obs: int, dim_cond: int, config_path: str, checkpoint_dir: str, ): """ Initialize the pipeline from a configuration file. Parameters ---------- config_path : str Path to the configuration file. """ with open(config_path, "r") as f: config = yaml.safe_load(f) # methodology strategy = config.get("strategy", {}) method = strategy.get("method") model_type = strategy.get("model") assert ( method == "flow" ), f"Method {method} not supported in SimformerFlowPipeline." assert ( model_type == "simformer" ), f"Model type {model_type} not supported in SimformerFlowPipeline." # Model parameters from config dim_joint = dim_obs + dim_cond params_dict = parse_simformer_params(config_path) params = SimformerParams( rngs=nnx.Rngs(0), dim_joint=dim_joint, **params_dict, ) # Training parameters training_config = cls.get_default_training_config() training_config["checkpoint_dir"] = checkpoint_dir training_config_ = parse_training_config(config_path) for key, value in training_config_.items(): training_config[key] = value # update with config file values pipeline = cls( train_dataset, val_dataset, dim_obs, dim_cond, ch_obs=params.in_channels, params=params, training_config=training_config, ) return pipeline
[docs] def _make_model(self, params): """ Create and return the Simformer model to be trained. """ model = Simformer(params) return model
[docs] def _get_default_params(self): """ Return default parameters for the Simformer model. """ params = SimformerParams( rngs=nnx.Rngs(0), in_channels=self.ch_obs, dim_value=40, dim_id=40, dim_condition=10, dim_joint=self.dim_joint, fourier_features=128, num_heads=4, num_layers=8, widening_factor=3, qkv_features=40, num_hidden_layers=1, ) return params
[docs] def sample( self, key, x_o, nsamples=10_000, step_size=0.01, use_ema=True, time_grid=None ): model_extras = { "edge_mask": self.edge_mask, } return super().sample( key, x_o, nsamples=nsamples, step_size=step_size, use_ema=use_ema, time_grid=time_grid, **model_extras, )
# def compute_unnorm_logprob( # self, x_1, x_o, step_size=0.01, use_ema=True, time_grid=None # ): # model_extras = { # "edge_mask": self.edge_mask, # } # return super().compute_unnorm_logprob( # x_1, # x_o, # step_size=step_size, # use_ema=use_ema, # time_grid=time_grid, # **model_extras, # )
[docs] class SimformerDiffusionPipeline(JointDiffusionPipeline): def __init__( self, train_dataset, val_dataset, dim_obs: int, dim_cond: int, ch_obs: int = 1, params=None, training_config=None, edge_mask=None, condition_mask_kind="structured", ): """ Diffusion pipeline for training and using a Simformer model for simulation-based inference. Parameters ---------- train_dataset : grain dataset or iterator over batches Training dataset. val_dataset : grain dataset or iterator over batches Validation dataset. dim_obs : int Dimension of the parameter space. dim_cond : int Dimension of the observation space. params : SimformerParams, optional Parameters for the Simformer model. If None, default parameters are used. training_config : dict, optional Configuration for training. If None, default configuration is used. edge_mask : jnp.ndarray, optional Edge mask for the Simformer model. If None, no mask is applied. condition_mask_kind : str, optional Kind of condition mask to use. One of ["structured", "posterior"]. Examples -------- Minimal example on how to instantiate and use the SimformerDiffusionPipeline: .. literalinclude:: /examples/simformer_diffusion_pipeline.py :language: python :linenos: .. image:: /examples/simformer_diffusion_pipeline_marginals.png :width: 600 .. note:: If you plan on using multiprocessing prefetching, ensure that your script is wrapped in a ``if __name__ == "__main__":`` guard. See https://docs.python.org/3/library/multiprocessing.html """
[docs] self.dim_joint = dim_obs + dim_cond
[docs] self.ch_obs = ch_obs
if params is None: params = self._get_default_params() model = self._make_model(params) super().__init__( model=model, train_dataset=train_dataset, val_dataset=val_dataset, dim_obs=dim_obs, dim_cond=dim_cond, ch_obs=ch_obs, params=params, training_config=training_config, condition_mask_kind=condition_mask_kind, )
[docs] self.ema_model = nnx.clone(self.model)
[docs] self.edge_mask = edge_mask
@classmethod
[docs] def init_pipeline_from_config( cls, train_dataset, val_dataset, dim_obs: int, dim_cond: int, config_path: str, checkpoint_dir: str, ): """ Initialize the pipeline from a configuration file. Parameters ---------- config_path : str Path to the configuration file. """ with open(config_path, "r") as f: config = yaml.safe_load(f) # methodology strategy = config.get("strategy", {}) method = strategy.get("method") model_type = strategy.get("model") assert ( method == "diffusion" ), f"Method {method} not supported in SimformerDiffusionPipeline." assert ( model_type == "simformer" ), f"Model type {model_type} not supported in SimformerDiffusionPipeline." # Model parameters from config dim_joint = dim_obs + dim_cond params_dict = parse_simformer_params(config_path) params = SimformerParams( rngs=nnx.Rngs(0), dim_joint=dim_joint, **params_dict, ) # Training parameters training_config = cls.get_default_training_config() training_config["checkpoint_dir"] = checkpoint_dir training_config_ = parse_training_config(config_path) for key, value in training_config_.items(): training_config[key] = value # update with config file values pipeline = cls( train_dataset, val_dataset, dim_obs, dim_cond, ch_obs=params.in_channels, params=params, training_config=training_config, ) return pipeline
[docs] def _make_model(self, params): """ Create and return the Simformer model to be trained. """ model = Simformer(params) return model
[docs] def _get_default_params(self): """ Return default parameters for the Simformer model. """ params = SimformerParams( in_channels=self.ch_obs, dim_value=40, dim_id=40, dim_condition=10, dim_joint=self.dim_joint, fourier_features=128, num_heads=4, num_layers=8, widening_factor=3, qkv_features=40, rngs=nnx.Rngs(0), num_hidden_layers=1, ) return params
[docs] def sample( self, key, x_o, nsamples=10_000, nsteps=18, use_ema=True, return_intermediates=False, ): model_extras = { "edge_mask": self.edge_mask, } return super().sample( key, x_o, nsamples=nsamples, nsteps=nsteps, use_ema=use_ema, return_intermediates=return_intermediates, **model_extras, )